This section outlines the experimental setup for the new Instance-Incremental Learning benchmarks.This section outlines the experimental setup for the new Instance-Incremental Learning benchmarks.

Evaluating Instance-Incremental Learning: CIL Methods on Cifar-100 and ImageNet

2025/11/06 01:30

Abstract and 1 Introduction

  1. Related works

  2. Problem setting

  3. Methodology

    4.1. Decision boundary-aware distillation

    4.2. Knowledge consolidation

  4. Experimental results and 5.1. Experiment Setup

    5.2. Comparison with SOTA methods

    5.3. Ablation study

  5. Conclusion and future work and References

    \

Supplementary Material

  1. Details of the theoretical analysis on KCEMA mechanism in IIL
  2. Algorithm overview
  3. Dataset details
  4. Implementation details
  5. Visualization of dusted input images
  6. More experimental results

5. Experimental results

We reorganize the training set of some existing datasets that are commonly used in the class-incremental learning to establish the benchmarks. Implementation details of our experiments can be found in the supplementary material.

5.1. Experiment Setup

5.1.1 Datasets

\

\ Table 1. Instance-incremental learning on Cifar-100 and ImageNet.The P P reflects the accuracy changing on test data Dtest over 10 IIL tasks. F is the forgetting rate on base training data D(0) after last IIL task. Results are average score and their 95% confidence interval of 5 runs with different incremental data orders. Following previous works, resnet-18 is used as the backbone network for all experiments.

\ Figure 4. Detailed performance promotion (P P) and forgetting rate (F) at each IIL phase. Best to view in color with scaling.

\ ImageNet [24] is another dataset that commonly used. The ImageNet-1000 which consists of 1.2 million training images and 150K testing images from 1000 classes. Following Douillard et al. [4, 6], we randomly select 100 classes (ImageNet-100) and split it into 1 base set with half of the training images and 10 incremental sets with another half of images as we do on Cifar-100.

\ Entity-30 included in BREEDS datasets [25] simulates the real-world sub-population shifting. For example, the base model learns the concept of dog with photos of “Poodles”, but on incremental data it has to extend the “dog” concept to “Terriers” or “Dalmatians”. Entity-30 has 240 subclasses with a large data size. As the sub-population shifting is a specific case of the instance-level concept drift, we evaluate the proposed method on Entity-30 following the setting of ISL [13].

\ 5.1.2 Evaluation metrics

\

\ 5.1.3 Evaluated baselines

\ As few existing method is proposed for the IIL setting, we reproduce several classic and SOTA CIL methods by referring to their original code or paper with the minimum revision, including iCarl [22] and LwF [12] which utilize labellevel distillation, PODNet [4] which implements distillation at the feature level, Der [31] which expends the network dynamically and attains the best CIL results, OnPro [29] which uses online prototypes to enhance the existing boundaries, and online learning [6] which can be applied to the hybrid-incremental learning. ISL [13] proposed for incremental sub-population learning is the only method that can be directly implemented in the new IIL setting. As most CIL methods require old exemplars, to compare with them, we additionally set a memory of 20 exemplars per class for these methods. We aim to provide a fair and comprehensive comparison in the new IIL scenario. Details of reproducing these methods can be found in our supp. material.

\

\

:::info Authors:

(1) Qiang Nie, Hong Kong University of Science and Technology (Guangzhou);

(2) Weifu Fu, Tencent Youtu Lab;

(3) Yuhuan Lin, Tencent Youtu Lab;

(4) Jialin Li, Tencent Youtu Lab;

(5) Yifeng Zhou, Tencent Youtu Lab;

(6) Yong Liu, Tencent Youtu Lab;

(7) Qiang Nie, Hong Kong University of Science and Technology (Guangzhou);

(8) Chengjie Wang, Tencent Youtu Lab.

:::


:::info This paper is available on arxiv under CC BY-NC-ND 4.0 Deed (Attribution-Noncommercial-Noderivs 4.0 International) license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Coinbase Issues Cryptocurrency Call to US Justice Department: “Solve Urgent Problems!”

Coinbase Issues Cryptocurrency Call to US Justice Department: “Solve Urgent Problems!”

The post Coinbase Issues Cryptocurrency Call to US Justice Department: “Solve Urgent Problems!” appeared on BitcoinEthereumNews.com. Coinbase, the largest cryptocurrency exchange in the United States, stated that there should be uniform cryptocurrency regulation in the country. At this point, Coinbase sent a letter to the US Department of Justice requesting that federal regulators prevent state regulations from conflicting with national crypto policies and ensure uniform regulatory clarity. Coinbase’s request comes after the state of Oregon filed a lawsuit against Coinbase for unregistered securities, despite the SEC withdrawing its lawsuit against the cryptocurrency exchange. Coinbase states that although the country’s top regulator, the SEC, withdrew its lawsuit, states are filing lawsuits in defiance of the SEC’s decision. In the letter, addressed by Coinbase Legal Counsel Paul Grewal, he stated: “Despite the Trump administration’s positive regulatory efforts, crypto companies are being negatively impacted by states’ flawed interpretations of securities laws and their divergent actions. If Oregon can sue us for services that are legal under federal law, we have a problem. It has long been clear that the current patchwork of state laws is not only inefficient, but also slows innovation and harms consumers. At this point, the Justice Department should take steps to address the pressing issues by calling on Congress to step in and enact comprehensive and uniform regulations.” Oregon Attorney General Dan Rayfield filed a lawsuit against Coinbase last April, alleging that Coinbase was promoting the sale of unregistered cryptocurrencies to individuals in Oregon. *This is not investment advice. Follow our Telegram and Twitter account now for exclusive news, analytics and on-chain data! Source: https://en.bitcoinsistemi.com/coinbase-issues-cryptocurrency-call-to-us-justice-department-solve-urgent-problems/
Share
BitcoinEthereumNews2025/09/18 05:06
Why This New Trending Meme Coin Is Being Dubbed The New PEPE After Record Presale

Why This New Trending Meme Coin Is Being Dubbed The New PEPE After Record Presale

The post Why This New Trending Meme Coin Is Being Dubbed The New PEPE After Record Presale appeared on BitcoinEthereumNews.com. Crypto News 17 September 2025 | 20:13 The meme coin market is heating up once again as traders look for the next breakout token. While Shiba Inu (SHIB) continues to build its ecosystem and PEPE holds onto its viral roots, a new contender, Layer Brett (LBRETT), is gaining attention after raising more than $3.7 million in its presale. With a live staking system, fast-growing community, and real tech backing, some analysts are already calling it “the next PEPE.” Here’s the latest on the Shiba Inu price forecast, what’s going on with PEPE, and why Layer Brett is drawing in new investors fast. Shiba Inu price forecast: Ecosystem builds, but retail looks elsewhere Shiba Inu (SHIB) continues to develop its broader ecosystem with Shibarium, the project’s Layer 2 network built to improve speed and lower gas fees. While the community remains strong, the price hasn’t followed suit lately. SHIB is currently trading around $0.00001298, and while that’s a decent jump from its earlier lows, it still falls short of triggering any major excitement across the market. The project includes additional tokens like BONE and LEASH, and also has ongoing initiatives in DeFi and NFTs. However, even with all this development, many investors feel the hype that once surrounded SHIB has shifted elsewhere, particularly toward newer, more dynamic meme coins offering better entry points and incentives. PEPE: Can it rebound or is the momentum gone? PEPE saw a parabolic rise during the last meme coin surge, catching fire on social media and delivering massive short-term gains for early adopters. However, like most meme tokens driven largely by hype, it has since cooled off. PEPE is currently trading around $0.00001076, down significantly from its peak. While the token still enjoys a loyal community, analysts believe its best days may be behind it unless…
Share
BitcoinEthereumNews2025/09/18 02:50