Acknowledging the collaborators from SLAC National Accelerator Laboratory and the University of Chicago for discussions and technical contributions, particularly with differentiable kernel density estimation.Acknowledging the collaborators from SLAC National Accelerator Laboratory and the University of Chicago for discussions and technical contributions, particularly with differentiable kernel density estimation.

Collaborative Research in Accelerator Physics: Acknowledgments and DOE Funding

2025/10/08 23:30

I. Introduction

II. Maximum Entropy Tomography

  • A. Ment
  • B. Ment-Flow

III. Numerical Experiments

  • A. 2D reconstructions from 1D projections
  • B. 6D reconstructions from 1D projections

IV. Conclusion and Extensions

V. Acknowledgments and References

V. ACKNOWLEDGEMENTS

We are grateful to Ryan Roussel (SLAC National Accelerator Laboratory), Juan Pablo Gonzalez-Aguilera (University of Chicago), and Auralee Edelen (SLAC National Accelerator Laboratory) for discussions that seeded the idea for this work and for sharing their differentiable kernel density estimation code.

\ This manuscript has been authored by UT Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

\


[1] B. Cathey, S. Cousineau, A. Aleksandrov, and A. Zhukov, First six-dimensional phase space measurement of an accelerator beam, Phys. Rev. Lett. 121, 064804 (2018).

\ [2] K. Ruisard, A. Aleksandrov, S. Cousineau, V. Tzoganis, and A. Zhukov, High dimensional characterization of the longitudinal phase space formed in a radio frequency quadrupole, Phys. Rev. Accel. Beams 23, 124201 (2020).

\ [3] A. Hoover, K. Ruisard, A. Aleksandrov, A. Zhukov, and S. Cousineau, Analysis of a hadron beam in fivedimensional phase space, Phys. Rev. Accel. Beams 26, 064202 (2023).

\ [4] Y. Liu, C. Long, and A. Aleksandrov, Nonintrusive measurement of time-resolved emittances of 1-gev operational hydrogen ion beam using a laser comb, Phys. Rev. Accel. Beams 23, 102806 (2020).

\ [5] A. Wolski, D. C. Christie, B. L. Militsyn, D. J. Scott, and H. Kockelbergh, Transverse phase space characterization in an accelerator test facility, Phys. Rev. Accel. Beams 23, 032804 (2020).

\ [6] K. Hock and A. Wolski, Tomographic reconstruction of the full 4D transverse phase space, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 726, 8 (2013).

\ [7] M. Wang, Z. Wang, D. Wang, W. Liu, B. Wang, M. Wang, M. Qiu, X. Guan, X. Wang, W. Huang, and S. Zheng, Four-dimensional phase space measurement using multiple two-dimensional profiles, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 943, 162438 (2019).

\ [8] B. Marchetti, A. Grudiev, P. Craievich, R. Assmann, H.- H. Braun, N. Catalan Lasheras, F. Christie, R. D’Arcy, R. Fortunati, R. Ganter, et al., Experimental demonstration of novel beam characterization using a polarizable x-band transverse deflection structure, Scientific reports 11, 3560 (2021).

\ [9] A. Wolski, M. A. Johnson, M. King, B. L. Militsyn, and P. H. Williams, Transverse phase space tomography in an accelerator test facility using image compression and machine learning, Phys. Rev. Accel. Beams 25, 122803 (2022).

\ [10] R. Roussel, A. Edelen, C. Mayes, D. Ratner, J. P. Gonzalez-Aguilera, S. Kim, E. Wisniewski, and J. Power, Phase space reconstruction from accelerator beam measurements using neural networks and differentiable simulations, Physical Review Letters 130, 145001 (2023).

\ [11] A. Scheinker, F. Cropp, and D. Filippetto, Adaptive autoencoder latent space tuning for more robust machine learning beyond the training set for six-dimensional phase space diagnostics of a time-varying ultrafast electron-diffraction compact accelerator, Phys. Rev. E 107, 045302 (2023).

\ [12] S. Jaster-Merz, R. W. Assmann, R. Brinkmann, F. Burkart, W. Hillert, M. Stanitzki, and T. Vinatier, 5D tomographic phase-space reconstruction of particle bunches, Phys. Rev. Accel. Beams 27, 072801 (2024).

\ [13] R. Roussel, J. P. Gonzalez-Aguilera, A. Edelen, E. Wisniewski, A. Ody, W. Liu, Y.-K. Kim, and J. Power, Efficient 6-dimensional phase space reconstruction from experimental measurements using generative machine learning (2024).

\ [14] S. Press´e, K. Ghosh, J. Lee, and K. A. Dill, Principles of maximum entropy and maximum caliber in statistical physics, Rev. Mod. Phys. 85, 1115 (2013).

\ [15] J. Skilling and S. F. Gull, Bayesian maximum entropy image reconstruction, Lecture Notes-Monograph Series , 341 (1991).

\ [16] R. D. Rosenkrantz, ET Jaynes: Papers on probability, statistics and statistical physics, Vol. 158 (Springer Science & Business Media, 2012).

\ [17] A. Giffin, Maximum Entropy: The Universal Method for Inference, Ph.D. thesis, University at Albany, State University of New York, Albany, NY, USA (2008).

\ [18] G. Loaiza-Ganem, Y. Gao, and J. P. Cunningham, Maximum entropy flow networks, in International Conference on Learning Representations (2016).

\ [19] J. C. Wong, A. Shishlo, A. Aleksandrov, Y. Liu, and C. Long, 4D transverse phase space tomography of an operational hydrogen ion beam via noninvasive 2d measurements using laser wires, Physical Review Accelerators and Beams 25, 10.1103/PhysRevAccelBeams.25.042801 (2022).

\ [20] C. Mottershead, Maximum entropy tomography, in Proceedings of the Fifteenth International Workshop on Maximum Entropy and Bayesian Methods, Santa Fe, New Mexico, USA (Springer, 1996) pp. 425–430.

\ [21] G. Minerbo, MENT: A maximum entropy algorithm for reconstructing a source from projection data, Computer Graphics and Image Processing 10, 48 (1979).

\ [22] N. J. Dusaussoy and I. E. Abdou, The extended MENT algorithm: a maximum entropy type algorithm using prior knowledge for computerized tomography, IEEE Transactions on Signal Processing 39, 1164 (1991).

\ [23] A. Tran and Y. Hao, Beam tomography with coupling using maximum entropy technique, in Proc. 14th International Particle Accelerator Conference, 14 (JACoW Publishing, Geneva, Switzerland, 2023) pp. 3944–3947.

\ [24] S. Bond-Taylor, A. Leach, Y. Long, and C. G. Willcocks, Deep generative modelling: A comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models, IEEE transactions on pattern analysis and machine intelligence 44, 7327 (2021).

\ [25] J. Kaiser, C. Xu, A. Eichler, and A. Santamaria Garcia, Bridging the gap between machine learning and particle accelerator physics with high-speed, differentiable simulations, Phys. Rev. Accel. Beams 27, 054601 (2024).

\ [26] Z. Ao and J. Li, Entropy estimation via normalizing flow, in Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36 (2022) pp. 9990–9998.

\ [27] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshminarayanan, Normalizing flows for probabilistic modeling and inference, The Journal of Machine Learning Research 22, 2617 (2021).

\ [28] V. Stimper, B. Sch¨olkopf, and J. M. Hern´andez-Lobato, Resampling base distributions of normalizing flows, in Proceedings of the 25th International Conference on Artificial Intelligence and Statistics (AISTATS), Proceedings of Machine Learning Research, Vol. 151 (PMLR, 2022) pp. 4915–4936.

\ [29] G. M. Green, Y.-S. Ting, and H. Kamdar, Deep potential: Recovering the gravitational potential from a snapshot of phase space, The Astrophysical Journal 942, 26 (2023).

\ [30] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, Neural spline flows, Advances in neural information processing systems 32 (2019).

\ [31] G. Papamakarios, T. Pavlakou, and I. Murray, Masked autoregressive flow for density estimation, Advances in neural information processing systems 30 (2017).

\ [32] A. Hoover, MENT-Flow: maximum-entropy phase space tomography using normalizing flows, 10.5281/zenodo.11110801 (2024).

\ [33] A. Aleksandrov, S. Cousineau, and K. Ruisard, Understanding beam distributions in hadron linacs in the presence of space charge, Journal of Instrumentation 15 (7), P07025.

\ [34] M. Laszkiewicz, J. Lederer, and A. Fischer, Marginal tailadaptive normalizing flows, in Proceedings of the 39th International Conference on Machine Learning, Proceedings of Machine Learning Research, Vol. 162, edited by K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato (PMLR, 2022) pp. 12020–12048.

\ [35] S. Basir and I. Senocak, An adaptive augmented lagrangian method for training physics and equality constrained artificial neural networks, arXiv preprint arXiv:2306.04904 (2023).

\ [36] B. Dai and U. Seljak, Sliced iterative normalizing flows, in Proceedings of the 38th International Conference on Machine Learning, Proceedings of Machine Learning Research, Vol. 139, edited by M. Meila and T. Zhang (PMLR, 2021) pp. 2352–2364.

\ [37] B. Klartag, A central limit theorem for convex sets, Inventiones mathematicae 168, 91 (2007).

\ [38] J. Qiang, Differentiable self-consistent space-charge simulation for accelerator design, Phys. Rev. Accel. Beams 26, 024601 (2023).

\ [39] M. Mardani, J. Song, J. Kautz, and A. Vahdat, A variational perspective on solving inverse problems with diffusion models, arXiv preprint arXiv:2305.04391 (2023).

\

:::info Authors:

(1) Austin Hoover, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA (hooveram@ornl.gov);

(2) Jonathan C. Wong, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Critical Victory: US Senate Passes Temporary Budget Bill Ending Government Shutdown Crisis

Critical Victory: US Senate Passes Temporary Budget Bill Ending Government Shutdown Crisis

BitcoinWorld Critical Victory: US Senate Passes Temporary Budget Bill Ending Government Shutdown Crisis In a crucial political breakthrough, the US Senate has approved a temporary budget bill that resolves the looming government shutdown crisis. This decisive action brings relief to millions of Americans and federal workers who faced uncertainty about government operations and services. What Does the Temporary Budget Bill Accomplish? The newly passed temporary budget bill provides essential government funding through January, ensuring continuous operation of federal agencies and services. This stopgap measure passed with a solid 60-40 vote margin, demonstrating bipartisan support for keeping the government functioning. Following the bill’s approval, President Donald Trump expressed optimism about the shutdown ending soon. The temporary budget bill represents a practical solution that allows more time for comprehensive budget negotiations while preventing immediate disruption to government services. Why Was This Temporary Budget Bill Necessary? Government shutdowns create widespread consequences that affect: Federal employee pay and benefits Essential public services National park operations Economic stability and market confidence The temporary budget bill serves as a bridge solution, providing lawmakers additional time to reach consensus on longer-term funding arrangements. This approach prevents the damaging effects of a full government shutdown while maintaining critical operations. How Does the Political Process Unfold From Here? With the temporary budget bill now passed, attention shifts to the House of Representatives and presidential approval. The legislative process requires both chambers to agree on identical versions before the bill reaches the President’s desk for signature. This temporary budget bill success follows reports of senators reaching partial agreements earlier in the week. The 60-40 vote margin indicates significant cross-party cooperation, suggesting growing consensus around the urgency of avoiding a government shutdown. What Are the Immediate Impacts of This Decision? The passage of this temporary budget bill brings several immediate benefits: Federal workers can continue their duties without interruption Government services remain accessible to citizens Economic uncertainty decreases International confidence in US stability strengthens Moreover, the temporary budget bill creates a stable environment for businesses and individuals who rely on consistent government operations. This stability is crucial for maintaining economic momentum and public confidence. Looking Ahead: What Comes After This Temporary Budget Bill? While this temporary budget bill resolves the immediate crisis, it sets the stage for more comprehensive budget negotiations in the coming months. Lawmakers now have until January to develop a longer-term funding solution that addresses broader fiscal priorities. The successful passage of this temporary budget bill demonstrates that bipartisan cooperation remains possible in challenging political environments. It serves as a model for future negotiations and highlights the importance of pragmatic solutions over ideological standoffs. Frequently Asked Questions What is a temporary budget bill? A temporary budget bill, often called a continuing resolution, provides short-term funding to keep government operations running when full-year budgets aren’t approved by the deadline. How long does this temporary budget bill last? This specific temporary budget bill funds the government through January, giving lawmakers several months to negotiate a more comprehensive budget agreement. What happens if a temporary budget bill isn’t passed? Without a temporary budget bill or full budget approval, the government would partially shut down, furloughing non-essential workers and suspending many services. Can the temporary budget bill be extended? Yes, temporary budget bills can be extended if lawmakers need additional time to reach agreement on longer-term funding solutions. What services continue during temporary budget periods? Essential services like national security, air traffic control, and law enforcement continue, while non-essential services may operate with reduced staffing. How does this affect federal employees? Federal employees continue working and receiving pay during temporary budget bill periods, avoiding the uncertainty of potential furloughs. Found this analysis helpful? Share this article with others who need to understand how the temporary budget bill affects our government and economy. Your shares help spread accurate information about important political developments. To learn more about how government decisions impact financial markets, explore our article on key developments shaping economic policy and market reactions. This post Critical Victory: US Senate Passes Temporary Budget Bill Ending Government Shutdown Crisis first appeared on BitcoinWorld.
Share
Coinstats2025/11/10 12:10