The post A Smarter Way to Talk to AI: Here’s How to ‘Context Engineer’ Your Prompts appeared on BitcoinEthereumNews.com. In brief Shanghai researchers say “context engineering” can boost AI performance without retraining the model. Tests show richer prompts improve relevance, coherence, and task completion rates. The approach builds on prompt engineering, expanding it into full situational design for human-AI interaction. A new paper from Shanghai AI Lab argues that large language models don’t always need bigger training data to get smarter—just better instructions. The researchers found that carefully designed “context prompts” can make AI systems produce more accurate and useful responses than generic ones. Think of it as setting the scene in a story so everything makes sense, a practical way to make AI feel more like a helpful friend than a clueless robot.  At its core, context engineering is all about carefully crafting the information you give to AI so it can respond more accurately and usefully. A person isn’t just an isolated individual; we’re shaped by our surroundings, relationships, and situations—or “contexts.” The same goes for AI. Machines often screw up because they lack the full picture. For example, if you ask an AI to “plan a trip,” it might suggest a luxury cruise without knowing you’re on a tight budget or traveling with kids. Context engineering fixes this by building in those details upfront. The researchers admit this idea isn’t new—it goes back over 20 years to the early days of computers. In those days, we had to adapt to clunky machines with rigid rules. Now, though powerful AI platforms can use natural language, we still need to engineer good contexts to avoid “entropy” (in this case, the word refers to confusion from too much vagueness or messiness).  How to context engineer your prompts  The paper offers ways to make your AI chats more effective right now. It builds on “prompt engineering” (crafting good questions)… The post A Smarter Way to Talk to AI: Here’s How to ‘Context Engineer’ Your Prompts appeared on BitcoinEthereumNews.com. In brief Shanghai researchers say “context engineering” can boost AI performance without retraining the model. Tests show richer prompts improve relevance, coherence, and task completion rates. The approach builds on prompt engineering, expanding it into full situational design for human-AI interaction. A new paper from Shanghai AI Lab argues that large language models don’t always need bigger training data to get smarter—just better instructions. The researchers found that carefully designed “context prompts” can make AI systems produce more accurate and useful responses than generic ones. Think of it as setting the scene in a story so everything makes sense, a practical way to make AI feel more like a helpful friend than a clueless robot.  At its core, context engineering is all about carefully crafting the information you give to AI so it can respond more accurately and usefully. A person isn’t just an isolated individual; we’re shaped by our surroundings, relationships, and situations—or “contexts.” The same goes for AI. Machines often screw up because they lack the full picture. For example, if you ask an AI to “plan a trip,” it might suggest a luxury cruise without knowing you’re on a tight budget or traveling with kids. Context engineering fixes this by building in those details upfront. The researchers admit this idea isn’t new—it goes back over 20 years to the early days of computers. In those days, we had to adapt to clunky machines with rigid rules. Now, though powerful AI platforms can use natural language, we still need to engineer good contexts to avoid “entropy” (in this case, the word refers to confusion from too much vagueness or messiness).  How to context engineer your prompts  The paper offers ways to make your AI chats more effective right now. It builds on “prompt engineering” (crafting good questions)…

A Smarter Way to Talk to AI: Here’s How to ‘Context Engineer’ Your Prompts

2025/11/04 09:21

In brief

  • Shanghai researchers say “context engineering” can boost AI performance without retraining the model.
  • Tests show richer prompts improve relevance, coherence, and task completion rates.
  • The approach builds on prompt engineering, expanding it into full situational design for human-AI interaction.

A new paper from Shanghai AI Lab argues that large language models don’t always need bigger training data to get smarter—just better instructions. The researchers found that carefully designed “context prompts” can make AI systems produce more accurate and useful responses than generic ones.

Think of it as setting the scene in a story so everything makes sense, a practical way to make AI feel more like a helpful friend than a clueless robot.  At its core, context engineering is all about carefully crafting the information you give to AI so it can respond more accurately and usefully.

A person isn’t just an isolated individual; we’re shaped by our surroundings, relationships, and situations—or “contexts.” The same goes for AI. Machines often screw up because they lack the full picture. For example, if you ask an AI to “plan a trip,” it might suggest a luxury cruise without knowing you’re on a tight budget or traveling with kids. Context engineering fixes this by building in those details upfront.

The researchers admit this idea isn’t new—it goes back over 20 years to the early days of computers. In those days, we had to adapt to clunky machines with rigid rules. Now, though powerful AI platforms can use natural language, we still need to engineer good contexts to avoid “entropy” (in this case, the word refers to confusion from too much vagueness or messiness).

How to context engineer your prompts 

The paper offers ways to make your AI chats more effective right now. It builds on “prompt engineering” (crafting good questions) but goes broader, focusing on the full context. Here are some user-friendly tips, with examples:

  • Start with the Basics: Who, What, Why
    Always include background to set the stage. Instead of “Write a poem,” try: “You’re a romantic poet writing for my anniversary. The theme is eternal love, keep it short and sweet.” This reduces misunderstandings.
  • Layer Your Info Like a Cake
    Build context in levels: Start broad, then add details. For a coding task: “I’m a beginner programmer. First, explain Python basics. Then, help debug this code [paste code]. Context: It’s for a simple game app.” This helps AI handle complex requests without overload.
  • Use Tags and Structure
    Organize prompts with labels for clarity, like “Goal: Plan a budget vacation; Constraints: Under $500, family-friendly; Preferences: Beach destinations.” This is like giving AI a roadmap.
  • Incorporate Multimodal Stuff (Like Images or History)
    If your query involves visuals or past chats, describe them: “Based on this image [describe or link], suggest outfit ideas. Previous context: I prefer casual styles.” For long tasks, summarize history: “Resume from last session: We discussed marketing strategies—now add social media tips.”
  • Filter Out the Noise
    Only include what’s essential. Test and tweak: If AI goes off-track, add clarifications like “Ignore unrelated topics—focus only on health benefits.
  • Think Ahead and Learn from Mistakes
    Anticipate needs: “Infer my goal from past queries on fitness—suggest a workout plan.” Keep errors in context for fixes: “Last time you suggested X, but it didn’t work because Y—adjust accordingly.”

Generally Intelligent Newsletter

A weekly AI journey narrated by Gen, a generative AI model.

Source: https://decrypt.co/347209/smarter-way-talk-ai-heres-context-engineer-prompts

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Kyrgyzstan registeert USDKG stablecoin: Eerste stablecoin van een staat

Kyrgyzstan registeert USDKG stablecoin: Eerste stablecoin van een staat

Kyrgyzstan, een land in Centraal-Azië, heeft haar eigen stablecoin geregistreerd: USDKG. De stablecoin wordt door goud ondersteund en zal vast staan aan de Amerikaanse dollar. Hiermee is het land de eerste met een state-owned stablecoin.  Hoe kan de stablecoin gebruikt worden? Wat ondersteunt USDKG? En wat betekent het voor de cryptomarkt? Check onze Discord Connect met "like-minded" crypto enthousiastelingen Leer gratis de basis van Bitcoin & trading - stap voor stap, zonder voorkennis. Krijg duidelijke uitleg & charts van ervaren analisten. Sluit je aan bij een community die samen groeit. Nu naar Discord Kyrgyzstan registreert eigen stablecoin USDKG Kyrgyzstan heeft haar eigen stablecoin geregistreerd, de USDKG. Het is een belangrijke vooruitgang wat het land een belangrijk land maakt voor crypto-adoptie. Het ministerie van Financiën van het land heeft de lancering aangekondigd, volgens een rapport van Trend. De stablecoin wordt ondersteund door goud en zal vaststaan aan de Amerikaanse dollar. In het begin komt de coin alleen in een pilot programma. Het moet de stabiliteit van traditionele activa combineren met de efficiëntie van blockchaintechnologie. Het uiteindelijke doel van de stablecoin is het integreren ervan in het nationale financiële systeem van Kyrgyzstan. Hiermee moet de economische soevereiniteit verbeteren. Het Kirgizische ministerie van Financiën onderhoudt de reserves van de coin. Elk token moet één Amerikaanse dollar aan waarde vertegenwoordigen. De goudreserves van het ministerie moeten transparant zijn, wat investeerders en burgers meer vertrouwen moet geven. Een stap richting brede crypto-adoptie Het is een belangrijke vooruitgang in hoe staten nu veilig blockchain kunnen integreren in hun economie. Het lijkt een stap in de richting van bredere adoptie van blockchain te zijn. De Kirgizische economie is sterk afhankelijk van andere landen, waardoor betalingen via de blockchain de kosten flink kunnen verlagen. Als de coin massale adoptie ziet, kan dit op de lange termijn veel adoptie naar de cryptomarkt brengen. Het kan aan de rest van de regio laten zien hoe belangrijk het is om voorop te blijven lopen op het gebied van crypto-adoptie. Buurlanden van Kyrgyzstan, waaronder Kazachstan en Oezbekistan, willen ook gebruikmaken van blockchain. Met de stablecoin is Kyrgyzstan de eerste die zo’n grote stap durft te zetten. Als USDKG succesvol is, kan het een regionaal model worden voor soevereine digitale activa. Ook kan het helpen met internationale interoperabiliteit in de Eurasian Economic Union (EAEU). Dit helpt met handelsefficiëntie tussen lidstaten. Best wallet - betrouwbare en anonieme wallet Best wallet - betrouwbare en anonieme wallet Meer dan 60 chains beschikbaar voor alle crypto Vroege toegang tot nieuwe projecten Hoge staking belongingen Lage transactiekosten Best wallet review Koop nu via Best Wallet Let op: cryptocurrency is een zeer volatiele en ongereguleerde investering. Doe je eigen onderzoek. Het bericht Kyrgyzstan registeert USDKG stablecoin: Eerste stablecoin van een staat is geschreven door Marijn van Leeuwen en verscheen als eerst op Bitcoinmagazine.nl.
Share
Coinstats2025/11/07 04:01