Install tf-models-official, pick a model (BERT/ALBERT/ELECTRA), download the checkpoint, and construct an encoder via EncoderConfig from either params.yaml (new) or legacy *_config.json. Wrap the encoder with tfm.nlp.models.BertClassifier for a 2-class head, then restore only encoder weights with tf.train.Checkpoint(...).read(...) (the head stays randomly initialized). For ELECTRA, discard the generator and use the discriminator (encoder) for downstream tasks. This gives a ready-to-fine-tune classifier across the BERT family with minimal code.Install tf-models-official, pick a model (BERT/ALBERT/ELECTRA), download the checkpoint, and construct an encoder via EncoderConfig from either params.yaml (new) or legacy *_config.json. Wrap the encoder with tfm.nlp.models.BertClassifier for a 2-class head, then restore only encoder weights with tf.train.Checkpoint(...).read(...) (the head stays randomly initialized). For ELECTRA, discard the generator and use the discriminator (encoder) for downstream tasks. This gives a ready-to-fine-tune classifier across the BERT family with minimal code.

Plug-and-Play LM Checkpoints with TensorFlow Model Garden

2025/09/10 15:00
10 min read

Content Overview

  • Install TF Model Garden package
  • Import necessary libraries
  • Load BERT model pretrained checkpoints
  • Select required BERT model
  • Construct BERT Model Using the NEW params.yaml
  • Construct BERT Model Using the old bert_config.json
  • Construct a Classifier with encoder_config
  • Load Pretrained Weights into the BERT Classifier
  • Load ALBERT model pretrained checkpoints
  • Construct ALBERT Model Using the New params.yaml
  • Construct ALBERT Model Using the Old albert_config.json
  • Construct a Classifier with encoder_config
  • Load Pretrained Weights into the Classifier
  • Load ELECTRA model pretrained checkpoints
  • Construct BERT Model Using the NEW params.yaml
  • Construct a Classifier with encoder_config
  • Load Pretrained Weights into the Classifier

\ \ This tutorial demonstrates how to load BERT, ALBERT and ELECTRA pretrained checkpoints and use them for downstream tasks.

Model Garden contains a collection of state-of-the-art models, implemented with TensorFlow's high-level APIs. The implementations demonstrate the best practices for modeling, letting users to take full advantage of TensorFlow for their research and product development.

Install TF Model Garden package

pip install -U -q "tf-models-official" 

Import necessary libraries

import os import yaml import json  import tensorflow as tf 

\

2023-10-17 12:27:09.738068: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered 2023-10-17 12:27:09.738115: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered 2023-10-17 12:27:09.738155: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered 

\

import tensorflow_models as tfm  from official.core import exp_factory 

Load BERT model pretrained checkpoints

Select required BERT model

# @title Download Checkpoint of the Selected Model { display-mode: "form", run: "auto" } model_display_name = 'BERT-base cased English'  # @param ['BERT-base uncased English','BERT-base cased English','BERT-large uncased English', 'BERT-large cased English', 'BERT-large, Uncased (Whole Word Masking)', 'BERT-large, Cased (Whole Word Masking)', 'BERT-base MultiLingual','BERT-base Chinese']  if model_display_name == 'BERT-base uncased English':   !wget "https://storage.googleapis.com/tf_model_garden/nlp/bert/v3/uncased_L-12_H-768_A-12.tar.gz"   !tar -xvf "uncased_L-12_H-768_A-12.tar.gz" elif model_display_name == 'BERT-base cased English':   !wget "https://storage.googleapis.com/tf_model_garden/nlp/bert/v3/cased_L-12_H-768_A-12.tar.gz"   !tar -xvf "cased_L-12_H-768_A-12.tar.gz" elif model_display_name == "BERT-large uncased English":   !wget "https://storage.googleapis.com/tf_model_garden/nlp/bert/v3/uncased_L-24_H-1024_A-16.tar.gz"   !tar -xvf "uncased_L-24_H-1024_A-16.tar.gz" elif model_display_name == "BERT-large cased English":   !wget "https://storage.googleapis.com/tf_model_garden/nlp/bert/v3/cased_L-24_H-1024_A-16.tar.gz"   !tar -xvf "cased_L-24_H-1024_A-16.tar.gz" elif model_display_name == "BERT-large, Uncased (Whole Word Masking)":   !wget "https://storage.googleapis.com/tf_model_garden/nlp/bert/v3/wwm_uncased_L-24_H-1024_A-16.tar.gz"   !tar -xvf "wwm_uncased_L-24_H-1024_A-16.tar.gz" elif model_display_name == "BERT-large, Cased (Whole Word Masking)":   !wget "https://storage.googleapis.com/tf_model_garden/nlp/bert/v3/wwm_cased_L-24_H-1024_A-16.tar.gz"   !tar -xvf "wwm_cased_L-24_H-1024_A-16.tar.gz" elif model_display_name == "BERT-base MultiLingual":   !wget "https://storage.googleapis.com/tf_model_garden/nlp/bert/v3/multi_cased_L-12_H-768_A-12.tar.gz"   !tar -xvf "multi_cased_L-12_H-768_A-12.tar.gz" elif model_display_name == "BERT-base Chinese":   !wget "https://storage.googleapis.com/tf_model_garden/nlp/bert/v3/chinese_L-12_H-768_A-12.tar.gz"   !tar -xvf "chinese_L-12_H-768_A-12.tar.gz" 

\

--2023-10-17 12:27:14--  https://storage.googleapis.com/tf_model_garden/nlp/bert/v3/cased_L-12_H-768_A-12.tar.gz Resolving storage.googleapis.com (storage.googleapis.com)... 172.217.219.207, 209.85.146.207, 209.85.147.207, ... Connecting to storage.googleapis.com (storage.googleapis.com)|172.217.219.207|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 401886728 (383M) [application/octet-stream] Saving to: ‘cased_L-12_H-768_A-12.tar.gz’  cased_L-12_H-768_A- 100%[===================>] 383.27M  79.4MB/s    in 5.3s      2023-10-17 12:27:19 (72.9 MB/s) - ‘cased_L-12_H-768_A-12.tar.gz’ saved [401886728/401886728]  cased_L-12_H-768_A-12/ cased_L-12_H-768_A-12/vocab.txt cased_L-12_H-768_A-12/bert_model.ckpt.index cased_L-12_H-768_A-12/bert_model.ckpt.data-00000-of-00001 cased_L-12_H-768_A-12/params.yaml cased_L-12_H-768_A-12/bert_config.json 

\

# Lookup table of the directory name corresponding to each model checkpoint folder_bert_dict = {     'BERT-base uncased English': 'uncased_L-12_H-768_A-12',     'BERT-base cased English': 'cased_L-12_H-768_A-12',     'BERT-large uncased English': 'uncased_L-24_H-1024_A-16',     'BERT-large cased English': 'cased_L-24_H-1024_A-16',     'BERT-large, Uncased (Whole Word Masking)': 'wwm_uncased_L-24_H-1024_A-16',     'BERT-large, Cased (Whole Word Masking)': 'wwm_cased_L-24_H-1024_A-16',     'BERT-base MultiLingual': 'multi_cased_L-12_H-768_A-1',     'BERT-base Chinese': 'chinese_L-12_H-768_A-12' }  folder_bert = folder_bert_dict.get(model_display_name) folder_bert 

\

'cased_L-12_H-768_A-12' 

Construct BERT Model Using the New params.yaml

params.yaml can be used for training with the bundled trainer in addition to constructing the BERT encoder here.

\

config_file = os.path.join(folder_bert, "params.yaml") config_dict = yaml.safe_load(tf.io.gfile.GFile(config_file).read()) config_dict 

\

{'task': {'model': {'encoder': {'bert': {'attention_dropout_rate': 0.1,      'dropout_rate': 0.1,      'hidden_activation': 'gelu',      'hidden_size': 768,      'initializer_range': 0.02,      'intermediate_size': 3072,      'max_position_embeddings': 512,      'num_attention_heads': 12,      'num_layers': 12,      'type_vocab_size': 2,      'vocab_size': 28996},     'type': 'bert'} } } } 

\

# Method 1: pass encoder config dict into EncoderConfig encoder_config = tfm.nlp.encoders.EncoderConfig(config_dict["task"]["model"]["encoder"]) encoder_config.get().as_dict() 

\

{'vocab_size': 28996,  'hidden_size': 768,  'num_layers': 12,  'num_attention_heads': 12,  'hidden_activation': 'gelu',  'intermediate_size': 3072,  'dropout_rate': 0.1,  'attention_dropout_rate': 0.1,  'max_position_embeddings': 512,  'type_vocab_size': 2,  'initializer_range': 0.02,  'embedding_size': None,  'output_range': None,  'return_all_encoder_outputs': False,  'return_attention_scores': False,  'norm_first': False} 

\

# Method 2: use override_params_dict function to override default Encoder params encoder_config = tfm.nlp.encoders.EncoderConfig() tfm.hyperparams.override_params_dict(encoder_config, config_dict["task"]["model"]["encoder"], is_strict=True) encoder_config.get().as_dict() 

\

{'vocab_size': 28996,  'hidden_size': 768,  'num_layers': 12,  'num_attention_heads': 12,  'hidden_activation': 'gelu',  'intermediate_size': 3072,  'dropout_rate': 0.1,  'attention_dropout_rate': 0.1,  'max_position_embeddings': 512,  'type_vocab_size': 2,  'initializer_range': 0.02,  'embedding_size': None,  'output_range': None,  'return_all_encoder_outputs': False,  'return_attention_scores': False,  'norm_first': False} 

Construct BERT Model Using the Old bert_config.json

bert_config_file = os.path.join(folder_bert, "bert_config.json") config_dict = json.loads(tf.io.gfile.GFile(bert_config_file).read()) config_dict 

\

{'hidden_size': 768,  'initializer_range': 0.02,  'intermediate_size': 3072,  'max_position_embeddings': 512,  'num_attention_heads': 12,  'num_layers': 12,  'type_vocab_size': 2,  'vocab_size': 28996,  'hidden_activation': 'gelu',  'dropout_rate': 0.1,  'attention_dropout_rate': 0.1} 

\

encoder_config = tfm.nlp.encoders.EncoderConfig({     'type':'bert',     'bert': config_dict })  encoder_config.get().as_dict() 

\

{'vocab_size': 28996,  'hidden_size': 768,  'num_layers': 12,  'num_attention_heads': 12,  'hidden_activation': 'gelu',  'intermediate_size': 3072,  'dropout_rate': 0.1,  'attention_dropout_rate': 0.1,  'max_position_embeddings': 512,  'type_vocab_size': 2,  'initializer_range': 0.02,  'embedding_size': None,  'output_range': None,  'return_all_encoder_outputs': False,  'return_attention_scores': False,  'norm_first': False} 

Construct a classifier with encoder_config

Here, we construct a new BERT Classifier with 2 classes and plot its model architecture. A BERT Classifier consists of a BERT encoder using the selected encoder config, a Dropout layer and a MLP classification head.

\

bert_encoder = tfm.nlp.encoders.build_encoder(encoder_config) bert_classifier = tfm.nlp.models.BertClassifier(network=bert_encoder, num_classes=2)  tf.keras.utils.plot_model(bert_classifier) 

\

2023-10-17 12:27:24.243086: W tensorflow/core/common_runtime/gpu/gpu_device.cc:2211] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... 

\

Load Pretrained Weights into the BERT Classifier

The provided pretrained checkpoint only contains weights for the BERT Encoder within the BERT Classifier. Weights for the Classification Head is still randomly initialized.

\

checkpoint = tf.train.Checkpoint(encoder=bert_encoder) checkpoint.read(     os.path.join(folder_bert, 'bert_model.ckpt')).expect_partial().assert_existing_objects_matched() 

\

<tensorflow.python.checkpoint.checkpoint.CheckpointLoadStatus at 0x7f73f8418fd0> 

Load ALBERT model pretrained checkpoints

# @title Download Checkpoint of the Selected Model { display-mode: "form", run: "auto" } albert_model_display_name = 'ALBERT-xxlarge English'  # @param ['ALBERT-base English', 'ALBERT-large English', 'ALBERT-xlarge English', 'ALBERT-xxlarge English']  if albert_model_display_name == 'ALBERT-base English':   !wget "https://storage.googleapis.com/tf_model_garden/nlp/albert/albert_base.tar.gz"   !tar -xvf "albert_base.tar.gz" elif albert_model_display_name == 'ALBERT-large English':   !wget "https://storage.googleapis.com/tf_model_garden/nlp/albert/albert_large.tar.gz"   !tar -xvf "albert_large.tar.gz" elif albert_model_display_name == "ALBERT-xlarge English":   !wget "https://storage.googleapis.com/tf_model_garden/nlp/albert/albert_xlarge.tar.gz"   !tar -xvf "albert_xlarge.tar.gz" elif albert_model_display_name == "ALBERT-xxlarge English":   !wget "https://storage.googleapis.com/tf_model_garden/nlp/albert/albert_xxlarge.tar.gz"   !tar -xvf "albert_xxlarge.tar.gz" 

\

--2023-10-17 12:27:27--  https://storage.googleapis.com/tf_model_garden/nlp/albert/albert_xxlarge.tar.gz Resolving storage.googleapis.com (storage.googleapis.com)... 172.253.114.207, 172.217.214.207, 142.251.6.207, ... Connecting to storage.googleapis.com (storage.googleapis.com)|172.253.114.207|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 826059238 (788M) [application/octet-stream] Saving to: ‘albert_xxlarge.tar.gz’  albert_xxlarge.tar. 100%[===================>] 787.79M   117MB/s    in 6.5s      2023-10-17 12:27:34 (122 MB/s) - ‘albert_xxlarge.tar.gz’ saved [826059238/826059238]  albert_xxlarge/ albert_xxlarge/bert_model.ckpt.index albert_xxlarge/30k-clean.model albert_xxlarge/30k-clean.vocab albert_xxlarge/bert_model.ckpt.data-00000-of-00001 albert_xxlarge/params.yaml albert_xxlarge/albert_config.json 

\

# Lookup table of the directory name corresponding to each model checkpoint folder_albert_dict = {     'ALBERT-base English': 'albert_base',     'ALBERT-large English': 'albert_large',     'ALBERT-xlarge English': 'albert_xlarge',     'ALBERT-xxlarge English': 'albert_xxlarge' }  folder_albert = folder_albert_dict.get(albert_model_display_name) folder_albert 

\

'albert_xxlarge' 

Construct ALBERT Model Using the New params.yaml

params.yaml can be used for training with the bundled trainer in addition to constructing the BERT encoder here.

\

config_file = os.path.join(folder_albert, "params.yaml") config_dict = yaml.safe_load(tf.io.gfile.GFile(config_file).read()) config_dict 

\

{'task': {'model': {'encoder': {'albert': {'attention_dropout_rate': 0.0,      'dropout_rate': 0.0,      'embedding_width': 128,      'hidden_activation': 'gelu',      'hidden_size': 4096,      'initializer_range': 0.02,      'intermediate_size': 16384,      'max_position_embeddings': 512,      'num_attention_heads': 64,      'num_layers': 12,      'type_vocab_size': 2,      'vocab_size': 30000},     'type': 'albert'} } } } 

\

# Method 1: pass encoder config dict into EncoderConfig encoder_config = tfm.nlp.encoders.EncoderConfig(config_dict["task"]["model"]["encoder"]) encoder_config.get().as_dict() 

\

{'vocab_size': 30000,  'embedding_width': 128,  'hidden_size': 4096,  'num_layers': 12,  'num_attention_heads': 64,  'hidden_activation': 'gelu',  'intermediate_size': 16384,  'dropout_rate': 0.0,  'attention_dropout_rate': 0.0,  'max_position_embeddings': 512,  'type_vocab_size': 2,  'initializer_range': 0.02} 

\

# Method 2: use override_params_dict function to override default Encoder params encoder_config = tfm.nlp.encoders.EncoderConfig() tfm.hyperparams.override_params_dict(encoder_config, config_dict["task"]["model"]["encoder"], is_strict=True) encoder_config.get().as_dict() 

\

{'vocab_size': 30000,  'embedding_width': 128,  'hidden_size': 4096,  'num_layers': 12,  'num_attention_heads': 64,  'hidden_activation': 'gelu',  'intermediate_size': 16384,  'dropout_rate': 0.0,  'attention_dropout_rate': 0.0,  'max_position_embeddings': 512,  'type_vocab_size': 2,  'initializer_range': 0.02} 

Construct ALBERT Model Using the Old albert_config.json

albert_config_file = os.path.join(folder_albert, "albert_config.json") config_dict = json.loads(tf.io.gfile.GFile(albert_config_file).read()) config_dict 

\

{'hidden_size': 4096,  'initializer_range': 0.02,  'intermediate_size': 16384,  'max_position_embeddings': 512,  'num_attention_heads': 64,  'type_vocab_size': 2,  'vocab_size': 30000,  'embedding_width': 128,  'attention_dropout_rate': 0.0,  'dropout_rate': 0.0,  'num_layers': 12,  'hidden_activation': 'gelu'} 

\

encoder_config = tfm.nlp.encoders.EncoderConfig({     'type':'albert',     'albert': config_dict })  encoder_config.get().as_dict() 

\

{'vocab_size': 30000,  'embedding_width': 128,  'hidden_size': 4096,  'num_layers': 12,  'num_attention_heads': 64,  'hidden_activation': 'gelu',  'intermediate_size': 16384,  'dropout_rate': 0.0,  'attention_dropout_rate': 0.0,  'max_position_embeddings': 512,  'type_vocab_size': 2,  'initializer_range': 0.02} 

Construct a Classifier with encoder_config

Here, we construct a new BERT Classifier with 2 classes and plot its model architecture. A BERT Classifier consists of a BERT encoder using the selected encoder config, a Dropout layer and a MLP classification head.

\

albert_encoder = tfm.nlp.encoders.build_encoder(encoder_config) albert_classifier = tfm.nlp.models.BertClassifier(network=albert_encoder, num_classes=2)  tf.keras.utils.plot_model(albert_classifier) 

\

Load Pretrained Weights into the Classifier

The provided pretrained checkpoint only contains weights for the ALBERT Encoder within the ALBERT Classifier. Weights for the Classification Head is still randomly initialized.

\

checkpoint = tf.train.Checkpoint(encoder=albert_encoder) checkpoint.read(     os.path.join(folder_albert, 'bert_model.ckpt')).expect_partial().assert_existing_objects_matched() 

\

<tensorflow.python.checkpoint.checkpoint.CheckpointLoadStatus at 0x7f73f8185fa0> 

Load ELECTRA model pretrained checkpoints

# @title Download Checkpoint of the Selected Model { display-mode: "form", run: "auto" } electra_model_display_name = 'ELECTRA-small English'  # @param ['ELECTRA-small English', 'ELECTRA-base English']  if electra_model_display_name == 'ELECTRA-small English':   !wget "https://storage.googleapis.com/tf_model_garden/nlp/electra/small.tar.gz"   !tar -xvf "small.tar.gz" elif electra_model_display_name == 'ELECTRA-base English':   !wget "https://storage.googleapis.com/tf_model_garden/nlp/electra/base.tar.gz"   !tar -xvf "base.tar.gz" 

\

--2023-10-17 12:27:45--  https://storage.googleapis.com/tf_model_garden/nlp/electra/small.tar.gz Resolving storage.googleapis.com (storage.googleapis.com)... 172.253.114.207, 172.217.214.207, 142.251.6.207, ... Connecting to storage.googleapis.com (storage.googleapis.com)|172.253.114.207|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 157951922 (151M) [application/octet-stream] Saving to: ‘small.tar.gz’  small.tar.gz        100%[===================>] 150.63M   173MB/s    in 0.9s      2023-10-17 12:27:46 (173 MB/s) - ‘small.tar.gz’ saved [157951922/157951922]  small/ small/ckpt-1000000.data-00000-of-00001 small/params.yaml small/checkpoint small/ckpt-1000000.index 

\

# Lookup table of the directory name corresponding to each model checkpoint folder_electra_dict = {     'ELECTRA-small English': 'small',     'ELECTRA-base English': 'base' }  folder_electra = folder_electra_dict.get(electra_model_display_name) folder_electra 

\

'small' 

Construct BERT Model Using the params.yaml

params.yaml can be used for training with the bundled trainer in addition to constructing the BERT encoder here.

\

config_file = os.path.join(folder_electra, "params.yaml") config_dict = yaml.safe_load(tf.io.gfile.GFile(config_file).read()) config_dict 

\

{'model': {'cls_heads': [{'activation': 'tanh',     'cls_token_idx': 0,     'dropout_rate': 0.1,     'inner_dim': 64,     'name': 'next_sentence',     'num_classes': 2}],   'disallow_correct': False,   'discriminator_encoder': {'type': 'bert',    'bert': {'attention_dropout_rate': 0.1,     'dropout_rate': 0.1,     'embedding_size': 128,     'hidden_activation': 'gelu',     'hidden_size': 256,     'initializer_range': 0.02,     'intermediate_size': 1024,     'max_position_embeddings': 512,     'num_attention_heads': 4,     'num_layers': 12,     'type_vocab_size': 2,     'vocab_size': 30522} },   'discriminator_loss_weight': 50.0,   'generator_encoder': {'type': 'bert',    'bert': {'attention_dropout_rate': 0.1,     'dropout_rate': 0.1,     'embedding_size': 128,     'hidden_activation': 'gelu',     'hidden_size': 64,     'initializer_range': 0.02,     'intermediate_size': 256,     'max_position_embeddings': 512,     'num_attention_heads': 1,     'num_layers': 12,     'type_vocab_size': 2,     'vocab_size': 30522} },   'num_classes': 2,   'num_masked_tokens': 76,   'sequence_length': 512,   'tie_embeddings': True} } 

\

disc_encoder_config = tfm.nlp.encoders.EncoderConfig(     config_dict['model']['discriminator_encoder'] )  disc_encoder_config.get().as_dict() 

\

{'vocab_size': 30522,  'hidden_size': 256,  'num_layers': 12,  'num_attention_heads': 4,  'hidden_activation': 'gelu',  'intermediate_size': 1024,  'dropout_rate': 0.1,  'attention_dropout_rate': 0.1,  'max_position_embeddings': 512,  'type_vocab_size': 2,  'initializer_range': 0.02,  'embedding_size': 128,  'output_range': None,  'return_all_encoder_outputs': False,  'return_attention_scores': False,  'norm_first': False} 

Construct a Classifier with encoder_config

Here, we construct a Classifier with 2 classes and plot its model architecture. A Classifier consists of a ELECTRA discriminator encoder using the selected encoder config, a Dropout layer and a MLP classification head.

\

:::tip Note: The generator is discarded and the discriminator is used for downstream tasks

:::

\

disc_encoder = tfm.nlp.encoders.build_encoder(disc_encoder_config) elctra_dic_classifier = tfm.nlp.models.BertClassifier(network=disc_encoder, num_classes=2) tf.keras.utils.plot_model(elctra_dic_classifier) 

\

Load Pretrained Weights into the Classifier

The provided pretrained checkpoint contains weights for the entire ELECTRA model. We are only loading its discriminator (conveninently named as encoder) wights within the Classifier. Weights for the Classification Head is still randomly initialized.

\

checkpoint = tf.train.Checkpoint(encoder=disc_encoder) checkpoint.read(     tf.train.latest_checkpoint(os.path.join(folder_electra))     ).expect_partial().assert_existing_objects_matched() 

\

<tensorflow.python.checkpoint.checkpoint.CheckpointLoadStatus at 0x7f74dbe84f40> 

\ \

:::info Originally published on the TensorFlow website, this article appears here under a new headline and is licensed under CC BY 4.0. Code samples shared under the Apache 2.0 License.

:::

\

Market Opportunity
PlaysOut Logo
PlaysOut Price(PLAY)
$0.09653
$0.09653$0.09653
+1.51%
USD
PlaysOut (PLAY) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Is Putnam Global Technology A (PGTAX) a strong mutual fund pick right now?

Is Putnam Global Technology A (PGTAX) a strong mutual fund pick right now?

The post Is Putnam Global Technology A (PGTAX) a strong mutual fund pick right now? appeared on BitcoinEthereumNews.com. On the lookout for a Sector – Tech fund? Starting with Putnam Global Technology A (PGTAX – Free Report) should not be a possibility at this time. PGTAX possesses a Zacks Mutual Fund Rank of 4 (Sell), which is based on various forecasting factors like size, cost, and past performance. Objective We note that PGTAX is a Sector – Tech option, and this area is loaded with many options. Found in a wide number of industries such as semiconductors, software, internet, and networking, tech companies are everywhere. Thus, Sector – Tech mutual funds that invest in technology let investors own a stake in a notoriously volatile sector, but with a much more diversified approach. History of fund/manager Putnam Funds is based in Canton, MA, and is the manager of PGTAX. The Putnam Global Technology A made its debut in January of 2009 and PGTAX has managed to accumulate roughly $650.01 million in assets, as of the most recently available information. The fund is currently managed by Di Yao who has been in charge of the fund since December of 2012. Performance Obviously, what investors are looking for in these funds is strong performance relative to their peers. PGTAX has a 5-year annualized total return of 14.46%, and is in the middle third among its category peers. But if you are looking for a shorter time frame, it is also worth looking at its 3-year annualized total return of 27.02%, which places it in the middle third during this time-frame. It is important to note that the product’s returns may not reflect all its expenses. Any fees not reflected would lower the returns. Total returns do not reflect the fund’s [%] sale charge. If sales charges were included, total returns would have been lower. When looking at a fund’s performance, it…
Share
BitcoinEthereumNews2025/09/18 04:05
Mystake Review 2023 – Unveil the Gaming Experience

Mystake Review 2023 – Unveil the Gaming Experience

Cryptsy - Latest Cryptocurrency News and Predictions Cryptsy - Latest Cryptocurrency News and Predictions - Experts in Crypto Casinos Did you know Mystake Casino
Share
Cryptsy2026/02/07 11:32
Strategic Move Sparks Market Analysis

Strategic Move Sparks Market Analysis

The post Strategic Move Sparks Market Analysis appeared on BitcoinEthereumNews.com. Trend Research Deposits $816M In ETH To Binance: Strategic Move Sparks Market
Share
BitcoinEthereumNews2026/02/07 11:13