The present research utilizes a T-type specimen to uncover how electric pulses turbocharge grain growth in magnesium  BUSAN, South Korea, Dec. 23, 2025 /PRNewswireThe present research utilizes a T-type specimen to uncover how electric pulses turbocharge grain growth in magnesium  BUSAN, South Korea, Dec. 23, 2025 /PRNewswire

Pusan National University Researchers Discover Faster, Smarter Heat Treatment for Lightweight Magnesium Metals

2025/12/23 22:15
3 min read

The present research utilizes a T-type specimen to uncover how electric pulses turbocharge grain growth in magnesium 

BUSAN, South Korea, Dec. 23, 2025 /PRNewswire/ — Electropulsing treatment (EPT) is a state-of-the-art technology for rapidly heating metallic materials. The highly energy-efficient and eco-sufficient process utilizes a pulsed current or ‘electropulse,’ achieving unique effects such as electroplasticity and electropulsing anisotropy. It facilitates fast microstructural evolution in alloys—compared to the conventional furnace heat treatment (FHT) technique—possibly via athermal contributions that go beyond the effects of Joule heating.

Recent efforts by scientists to determine these athermal contributions have focused on direct comparisons between EPT and FHT at the same temperatures. However, such approaches are expected to suffer from significant experimental errors.

In a new study, a team of researchers from Korea, led by Professor Taekyung Lee, a faculty at the School of Mechanical Engineering at Pusan National University and the head of the Metal Design & Mechanics (MEDEM) Lab, has utilized a special “T-shaped” magnesium sample that facilitates the separation of the normal heating effects from the extra, athermal effects of EPT. Their findings were made available online and have been recently published in the Journal of Magnesium and Alloys on 08 December 2025.

Prof. Lee highlights the novelty of their work, “Our innovative T-type specimen methodology separates the current and heat transfer paths within a single specimen subjected to EPT. This pioneering methodology is contrasted by the conventional method that compared two different specimens: one with EPT and the other with FHT at a similar temperature. This traditional methodology possesses lots of inherent limitations. On the other hand, the T-type specimen methodology allows for the independent analysis of thermal and athermal effects of EPT within a single specimen.”

By carefully controlling the electric current in a pre-twinned AZ31 magnesium alloy sample, the team created two regions in the same sample that reached almost the same temperature, but only one region actually carried current. They found that the region carrying current showed enhanced strain-induced boundary migration mechanism, much faster grain growth, twin boundary removal, low-angle grain boundary reduction, dislocation annihilation, and softening than the region heated only by conduction. This proves that EPT can accelerate microstructural changes beyond what can be explained by heat alone.

The researchers verified their results using finite element analysis, which confirmed electric current flow confinement to a single beam and reliably reproduced the curved thermal distribution observed at the beam intersection in the T-type specimen.

Prof. Lee sheds light on the long-term implications of their innovative technology, “Measuring the athermal effect without Joule heat, or thermal effect, in the EPT process has long been a major challenge in academia. The developed methodology can help researchers understand the physical principles governing EPT. It is, therefore, expected to become a core standard measuring technology for advancing high-efficiency and eco-friendly forming techniques—known as electrically-assisted forming—for various metallic materials using electropulses.”

Overall, the T-type specimen approach presented in this study offers a robust framework for separating the thermal and athermal effects of EPT at the macroscale, thus providing an indispensable tool for elaborating their respective roles in EPT-driven microstructures and mechanical properties.

Reference
Title of original paper: Validating the athermal contribution of electropulsing treatment utilizing T-type Mg specimen
Journal: Journal of Magnesium and Alloys
DOI: 10.1016/j.jma.2025.11.017

About Pusan National University
Website: https://www.pusan.ac.kr/eng/Main.do 

Media Contact:
Goon-Soo Kim
82 51 510 7928
406710@email4pr.com

Cision View original content to download multimedia:https://www.prnewswire.com/news-releases/pusan-national-university-researchers-discover-faster-smarter-heat-treatment-for-lightweight-magnesium-metals-302648151.html

SOURCE Pusan National University

Market Opportunity
Threshold Logo
Threshold Price(T)
$0.007143
$0.007143$0.007143
+2.04%
USD
Threshold (T) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

House Judiciary Rejects Vote To Subpoena Banks CEOs For Epstein Case

House Judiciary Rejects Vote To Subpoena Banks CEOs For Epstein Case

The post House Judiciary Rejects Vote To Subpoena Banks CEOs For Epstein Case appeared on BitcoinEthereumNews.com. Topline House Judiciary Committee Republicans blocked a Democrat effort Wednesday to subpoena a group of major banks as part of a renewed investigation into late sex offender Jeffrey Epstein’s financial ties. Congressman Jim Jordan, R-OH, is the chairman of the committee. (Photo by Nathan Posner/Anadolu via Getty Images) Anadolu via Getty Images Key Facts A near party-line vote squashed the effort to vote on a subpoena, with Rep. Thomas Massie, R-Ky., who is leading a separate effort to force the Justice Department to release more Epstein case materials, voting alongside Democrats. The vote, if successful, would have resulted in the issuing of subpoenas to JPMorgan Chase CEO Jamie Dimon, Bank of America CEO Brian Moynihan, Deutsche Bank CEO Christian Sewing and Bank of New York Mellon CEO Robin Vince. The subpoenas would have specifically looked into multiple reports that claimed the four banks flagged $1.5 billion in suspicious transactions linked to Epstein. The failed effort from Democrats followed an FBI oversight hearing in which agency director Kash Patel misleadingly claimed the FBI cannot release many of the files it has on Epstein. Get Forbes Breaking News Text Alerts: We’re launching text message alerts so you’ll always know the biggest stories shaping the day’s headlines. Text “Alerts” to (201) 335-0739 or sign up here. Crucial Quote Dimon, who attended a lunch with Senate Republicans before the vote, according to Politico, told reporters, “We regret any association with that man at all. And, of course, if it’s a legal requirement, we would conform to it. We have no issue with that.” Chief Critic “Republicans had the chance to subpoena the CEOs of JPMorgan, Bank of America, Deutsche Bank, and Bank of New York Mellon to expose Epstein’s money trail,” the House Judiciary Democrats said in a tweet. “Instead, they tried to bury…
Share
BitcoinEthereumNews2025/09/18 08:02
Propel to Report Q4 and Full Year 2025 Financial Results and Announces Dividend Increase

Propel to Report Q4 and Full Year 2025 Financial Results and Announces Dividend Increase

TORONTO, Feb. 10, 2026 /CNW/ – Propel Holdings Inc. (“Propel”) (TSX: PRL), the fintech facilitating access to credit for underserved consumers, announced today
Share
AI Journal2026/02/11 09:15
CME Group to launch options on XRP and SOL futures

CME Group to launch options on XRP and SOL futures

The post CME Group to launch options on XRP and SOL futures appeared on BitcoinEthereumNews.com. CME Group will offer options based on the derivative markets on Solana (SOL) and XRP. The new markets will open on October 13, after regulatory approval.  CME Group will expand its crypto products with options on the futures markets of Solana (SOL) and XRP. The futures market will start on October 13, after regulatory review and approval.  The options will allow the trading of MicroSol, XRP, and MicroXRP futures, with expiry dates available every business day, monthly, and quarterly. The new products will be added to the existing BTC and ETH options markets. ‘The launch of these options contracts builds on the significant growth and increasing liquidity we have seen across our suite of Solana and XRP futures,’ said Giovanni Vicioso, CME Group Global Head of Cryptocurrency Products. The options contracts will have two main sizes, tracking the futures contracts. The new market will be suitable for sophisticated institutional traders, as well as active individual traders. The addition of options markets singles out XRP and SOL as liquid enough to offer the potential to bet on a market direction.  The options on futures arrive a few months after the launch of SOL futures. Both SOL and XRP had peak volumes in August, though XRP activity has slowed down in September. XRP and SOL options to tap both institutions and active traders Crypto options are one of the indicators of market attitudes, with XRP and SOL receiving a new way to gauge sentiment. The contracts will be supported by the Cumberland team.  ‘As one of the biggest liquidity providers in the ecosystem, the Cumberland team is excited to support CME Group’s continued expansion of crypto offerings,’ said Roman Makarov, Head of Cumberland Options Trading at DRW. ‘The launch of options on Solana and XRP futures is the latest example of the…
Share
BitcoinEthereumNews2025/09/18 00:56