In the world of cryptocurrencies, innovation rarely comes without a price, usually in the form of expensive mining rigs, high electricity bills, or complex setupsIn the world of cryptocurrencies, innovation rarely comes without a price, usually in the form of expensive mining rigs, high electricity bills, or complex setups

Best Crypto to Buy Now: Mine-To-Earn Crypto at Zero Cost with Pepenode

Best Crypto to Buy Now: Mine Crypto at Zero Cost with Pepenode

In the world of cryptocurrencies, innovation rarely comes without a price, usually in the form of expensive mining rigs, high electricity bills, or complex setups. Pepenode, a new project gaining significant attention, challenges this model entirely.

It offers a way to earn crypto rewards through a virtual mining ecosystem, all from your browser and without spending a cent on physical equipment.

Pepenode redefines crypto mining by combining meme culture with Web3 gaming mechanics.

Rather than being just another meme token, the project creates a strategic, interactive environment where players manage virtual mining nodes, optimize server performance, and earn rewards in Pepenode tokens as well as other meme coins like Pepe and Fartcoin.

Success depends on skill and strategic decisions rather than expensive hardware, making the platform accessible to anyone interested in crypto.

Source – Insidebitcoins YouTube Channel

Mining Without Limits

Traditional cryptocurrency mining has become highly competitive, dominated by large corporations running multi-million-dollar operations.

The computational power required to mine Bitcoin today is astronomical, leaving small-scale miners effectively shut out and unable to compete. Pepenode flips this dynamic by making mining a strategic, gamified experience rather than a hardware race.

Players can decide how to structure their virtual server rooms, choose which nodes to upgrade, and optimize efficiency, with every choice directly impacting their rewards.

The simulation mirrors real mining mechanics, including performance metrics and output calculations, providing the excitement of mining without the need for expensive equipment or high electricity costs.

By turning decision-making into the core of gameplay, Pepenode offers both engagement and real economic incentives for participants.

Why Analysts Are Bullish on Pepenode’s Long-Term Outlook

Pepenode’s token model is carefully crafted to reward engagement and create scarcity. Every time a player spends Pepenode tokens to enhance their infrastructure, 70% of the tokens are burned permanently.

This deflationary design introduces an economic feedback loop that could support long-term price appreciation as activity grows.

Staking rewards further strengthen the token economy. With an annual return of over 500%, early participants have a strong incentive to lock in their tokens, helping stabilize the market while offering potentially substantial returns.

It is these carefully designed mechanics that have caught the attention of crypto analysts. Recent reviews from crypto analysts, including Alessandro De Crypto Official (YouTube), highlight the project’s strong market potential.

They suggest that Pepenode’s combination of deflationary mechanics, tangible in-game utility, and meme appeal could position it as one of the top-performing meme coins in the next cycle, with the possibility of significant growth in 2026.

How Pepenode Ensures Safety While Boosting Portfolio Potential

Pepenode has also prioritized security. Independent audits by Coinsult and SpiceWolf reported no critical vulnerabilities, which adds confidence for early investors. The countdown to the end of the presale is underway.

Interested investors can purchase PEPENODE directly through the official website using various payment methods, including Ethereum, BNB, USDT, or even credit cards.

The project specifically recommends using a non-custodial wallet like Best Wallet, noting PEPENODE’s integration with future tokens on that platform.

By blending the power of meme nostalgia with ingenious economic design and utility, Pepenode is not just a game; it’s a platform that aims to provide a real boost to a user’s portfolio by rewarding strategic intelligence over financial muscle.

A New Era of Gamified Crypto Mining with Pepenode

Pepenode is more than a meme coin, it’s a strategic entry point into gamified crypto mining. By combining nostalgic mining mechanics, clever economic design, and meme-driven community engagement, it creates a space where strategy and smart decision-making matter more than raw capital.

The presale closing soon marks a key opportunity for investors and players to join early, and the project is already shaping up as a notable contender in the Web3 gaming and meme coin sectors.

For those interested in crypto innovation that is playful yet potentially profitable, Pepenode offers a rare balance: engaging gameplay, sustainable tokenomics, and the thrill of virtual mining without the traditional barriers.

Visit Pepenode

This article has been provided by one of our commercial partners and does not reflect Cryptonomist’s opinion. Please be aware our commercial partners may use affiliate programs to generate revenues through the links on this article.

Market Opportunity
Best Wallet Logo
Best Wallet Price(BEST)
$0.001412
$0.001412$0.001412
-4.85%
USD
Best Wallet (BEST) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

SM Offices investing P1B in Cebu expansion

SM Offices investing P1B in Cebu expansion

SM OFFICES, the commercial property arm of SM Prime Holdings, Inc., plans to add more than 60,000 square meters (sq.m.) of new leasable space worth about P1 billion
Share
Bworldonline2026/02/20 00:06
Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Turn lengthy earnings call transcripts into one-page insights using the Financial Modeling Prep APIPhoto by Bich Tran Earnings calls are packed with insights. They tell you how a company performed, what management expects in the future, and what analysts are worried about. The challenge is that these transcripts often stretch across dozens of pages, making it tough to separate the key takeaways from the noise. With the right tools, you don’t need to spend hours reading every line. By combining the Financial Modeling Prep (FMP) API with Groq’s lightning-fast LLMs, you can transform any earnings call into a concise summary in seconds. The FMP API provides reliable access to complete transcripts, while Groq handles the heavy lifting of distilling them into clear, actionable highlights. In this article, we’ll build a Python workflow that brings these two together. You’ll see how to fetch transcripts for any stock, prepare the text, and instantly generate a one-page summary. Whether you’re tracking Apple, NVIDIA, or your favorite growth stock, the process works the same — fast, accurate, and ready whenever you are. Fetching Earnings Transcripts with FMP API The first step is to pull the raw transcript data. FMP makes this simple with dedicated endpoints for earnings calls. If you want the latest transcripts across the market, you can use the stable endpoint /stable/earning-call-transcript-latest. For a specific stock, the v3 endpoint lets you request transcripts by symbol, quarter, and year using the pattern: https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={q}&year={y}&apikey=YOUR_API_KEY here’s how you can fetch NVIDIA’s transcript for a given quarter: import requestsAPI_KEY = "your_api_key"symbol = "NVDA"quarter = 2year = 2024url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={API_KEY}"response = requests.get(url)data = response.json()# Inspect the keysprint(data.keys())# Access transcript contentif "content" in data[0]: transcript_text = data[0]["content"] print(transcript_text[:500]) # preview first 500 characters The response typically includes details like the company symbol, quarter, year, and the full transcript text. If you aren’t sure which quarter to query, the “latest transcripts” endpoint is the quickest way to always stay up to date. Cleaning and Preparing Transcript Data Raw transcripts from the API often include long paragraphs, speaker tags, and formatting artifacts. Before sending them to an LLM, it helps to organize the text into a cleaner structure. Most transcripts follow a pattern: prepared remarks from executives first, followed by a Q&A session with analysts. Separating these sections gives better control when prompting the model. In Python, you can parse the transcript and strip out unnecessary characters. A simple way is to split by markers such as “Operator” or “Question-and-Answer.” Once separated, you can create two blocks — Prepared Remarks and Q&A — that will later be summarized independently. This ensures the model handles each section within context and avoids missing important details. Here’s a small example of how you might start preparing the data: import re# Example: using the transcript_text we fetched earliertext = transcript_text# Remove extra spaces and line breaksclean_text = re.sub(r'\s+', ' ', text).strip()# Split sections (this is a heuristic; real-world transcripts vary slightly)if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1)else: prepared, qna = clean_text, ""print("Prepared Remarks Preview:\n", prepared[:500])print("\nQ&A Preview:\n", qna[:500]) With the transcript cleaned and divided, you’re ready to feed it into Groq’s LLM. Chunking may be necessary if the text is very long. A good approach is to break it into segments of a few thousand tokens, summarize each part, and then merge the summaries in a final pass. Summarizing with Groq LLM Now that the transcript is clean and split into Prepared Remarks and Q&A, we’ll use Groq to generate a crisp one-pager. The idea is simple: summarize each section separately (for focus and accuracy), then synthesize a final brief. Prompt design (concise and factual) Use a short, repeatable template that pushes for neutral, investor-ready language: You are an equity research analyst. Summarize the following earnings call sectionfor {symbol} ({quarter} {year}). Be factual and concise.Return:1) TL;DR (3–5 bullets)2) Results vs. guidance (what improved/worsened)3) Forward outlook (specific statements)4) Risks / watch-outs5) Q&A takeaways (if present)Text:<<<{section_text}>>> Python: calling Groq and getting a clean summary Groq provides an OpenAI-compatible API. Set your GROQ_API_KEY and pick a fast, high-quality model (e.g., a Llama-3.1 70B variant). We’ll write a helper to summarize any text block, then run it for both sections and merge. import osimport textwrapimport requestsGROQ_API_KEY = os.environ.get("GROQ_API_KEY") or "your_groq_api_key"GROQ_BASE_URL = "https://api.groq.com/openai/v1" # OpenAI-compatibleMODEL = "llama-3.1-70b" # choose your preferred Groq modeldef call_groq(prompt, temperature=0.2, max_tokens=1200): url = f"{GROQ_BASE_URL}/chat/completions" headers = { "Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json", } payload = { "model": MODEL, "messages": [ {"role": "system", "content": "You are a precise, neutral equity research analyst."}, {"role": "user", "content": prompt}, ], "temperature": temperature, "max_tokens": max_tokens, } r = requests.post(url, headers=headers, json=payload, timeout=60) r.raise_for_status() return r.json()["choices"][0]["message"]["content"].strip()def build_prompt(section_text, symbol, quarter, year): template = """ You are an equity research analyst. Summarize the following earnings call section for {symbol} ({quarter} {year}). Be factual and concise. Return: 1) TL;DR (3–5 bullets) 2) Results vs. guidance (what improved/worsened) 3) Forward outlook (specific statements) 4) Risks / watch-outs 5) Q&A takeaways (if present) Text: <<< {section_text} >>> """ return textwrap.dedent(template).format( symbol=symbol, quarter=quarter, year=year, section_text=section_text )def summarize_section(section_text, symbol="NVDA", quarter="Q2", year="2024"): if not section_text or section_text.strip() == "": return "(No content found for this section.)" prompt = build_prompt(section_text, symbol, quarter, year) return call_groq(prompt)# Example usage with the cleaned splits from Section 3prepared_summary = summarize_section(prepared, symbol="NVDA", quarter="Q2", year="2024")qna_summary = summarize_section(qna, symbol="NVDA", quarter="Q2", year="2024")final_one_pager = f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks — Key Points{prepared_summary}## Q&A Highlights{qna_summary}""".strip()print(final_one_pager[:1200]) # preview Tips that keep quality high: Keep temperature low (≈0.2) for factual tone. If a section is extremely long, chunk at ~5–8k tokens, summarize each chunk with the same prompt, then ask the model to merge chunk summaries into one section summary before producing the final one-pager. If you also fetched headline numbers (EPS/revenue, guidance) earlier, prepend them to the prompt as brief context to help the model anchor on the right outcomes. Building the End-to-End Pipeline At this point, we have all the building blocks: the FMP API to fetch transcripts, a cleaning step to structure the data, and Groq LLM to generate concise summaries. The final step is to connect everything into a single workflow that can take any ticker and return a one-page earnings call summary. The flow looks like this: Input a stock ticker (for example, NVDA). Use FMP to fetch the latest transcript. Clean and split the text into Prepared Remarks and Q&A. Send each section to Groq for summarization. Merge the outputs into a neatly formatted earnings one-pager. Here’s how it comes together in Python: def summarize_earnings_call(symbol, quarter, year, api_key, groq_key): # Step 1: Fetch transcript from FMP url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={api_key}" resp = requests.get(url) resp.raise_for_status() data = resp.json() if not data or "content" not in data[0]: return f"No transcript found for {symbol} {quarter} {year}" text = data[0]["content"] # Step 2: Clean and split clean_text = re.sub(r'\s+', ' ', text).strip() if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1) else: prepared, qna = clean_text, "" # Step 3: Summarize with Groq prepared_summary = summarize_section(prepared, symbol, quarter, year) qna_summary = summarize_section(qna, symbol, quarter, year) # Step 4: Merge into final one-pager return f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks{prepared_summary}## Q&A Highlights{qna_summary}""".strip()# Example runprint(summarize_earnings_call("NVDA", 2, 2024, API_KEY, GROQ_API_KEY)) With this setup, generating a summary becomes as simple as calling one function with a ticker and date. You can run it inside a notebook, integrate it into a research workflow, or even schedule it to trigger after each new earnings release. Free Stock Market API and Financial Statements API... Conclusion Earnings calls no longer need to feel overwhelming. With the Financial Modeling Prep API, you can instantly access any company’s transcript, and with Groq LLM, you can turn that raw text into a sharp, actionable summary in seconds. This pipeline saves hours of reading and ensures you never miss the key results, guidance, or risks hidden in lengthy remarks. Whether you track tech giants like NVIDIA or smaller growth stocks, the process is the same — fast, reliable, and powered by the flexibility of FMP’s data. Summarize Any Stock’s Earnings Call in Seconds Using FMP API was originally published in Coinmonks on Medium, where people are continuing the conversation by highlighting and responding to this story
Share
Medium2025/09/18 14:40
Meme Coin Frenzy Cools, Altcoins Take the Spotlight

Meme Coin Frenzy Cools, Altcoins Take the Spotlight

Pump.fun’s flagship coin PUMP dropped nearly 10% in a single day, dragging down related tokens such as TROLL and Aura, […] The post Meme Coin Frenzy Cools, Altcoins Take the Spotlight appeared first on Coindoo.
Share
Coindoo2025/09/20 00:00